The Inhibition of *Escherichia coli* O\textsubscript{157:H} Inoculated in Hamburger Using a Chitosan/Cellulose Nanofiber Film Containing the Nanoemulsion of *Trachyspermum ammi* and *Bunium persicum* Essential Oils

Batool Soltaninezhad a | Saeid Khanzadi a * | Mohammad Hashemi b c | Mohammad Azizzadeh d

a. Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
b. Department of Nutrition, Faculty of Veterinary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
c. Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
d. Department of Clinical Science, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.

*Corresponding author at: Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran. Postal code: 9177948974.
E-mail address: Khanzadi@um.ac.ir

1. Introduction

Meat is a perishable food and requires proper maintenance. When stored at the temperature of 4°C, the shelf life of fresh beef is extremely low (3-5 days), which is attributed to the high water content and chemical composition of the food. These factors often facilitate hazardous microbial growth, thereby leading to the spoilage of meat [1]. Although preventive measures are observed in animal slaughter and proper hygiene and productive measures are also taken in the other stages of meat processing, pathogenic bacterial contamination remains an important health threat in the case of raw meat and other meat products. Some of the most harmful pathogens in this regard include *Salmonella* spp., *Listeria monocytogenes*, *Campylobacter* spp., and pathogenic verotoxin-producing *E. coli* [2]. The outbreaks of foodborne diseases have been reported in various food products, while foods of bovine
origin are considered to be the main carriers of \(E. \) coli \(\text{O}_{157}: \text{H}_7 \) infections in humans [3]. The Shiga toxigenic \(E. \) coli \(\text{O}_{157}: \text{H}_7 \) outbreaks have been previously reported in hamburger [4].

A novel approach to enhancing the shelf life of food products and their preservation involves the use of active, edible films, which mainly contain antimicrobial agents [1]. Various biopolymers are used in the production of such film. Such example is, Chitosan, which is extensively used in the production of films and gels to reinforce the organoleptic properties of foods, such as oxygen/humidity permeability and functional substances (e.g., flavoring agents, vitamins, coloring agents, and antioxidants) [5]. In general, antimicrobial agents are combined with polymeric materials (e.g., chitosan) in order to produce effective antimicrobial films [6].

Cellulose is the most abundant polysaccharide in nature. Recently, cellulose nanofiber (CNF) has been employed in the production of nanocomposite polymers. CNF has remarkable potential in the reinforcement of nanocomposites. Among the other prominent features of CNF are the low density, renewable nature, high strength, and modulus. In addition, CNF could improve some of the physical, mechanical, optical, and thermal properties of film components [7].

Essential oils (EOs) are extracted from the flowers, buds, seeds, leaves, bark, herbs, fruits, and roots of various plants [8]. EOs are secondary metabolites that could inhibit the growth of the microbial pathogens that cause various foodborne diseases and food spoilage [5]. \(Bunium \) persicum belongs to the \(Apiaceae \) family and grows in regions such as the central Asia, Iran, Pakistan, Afghanistan, and India [9]. \(Bunium \) persicum EO is an abundant source of antibacterial agents owing to the high concentrations of oxygenated monoterpenes, including \(\gamma \)-terpinene, cymaldehyde, \(\rho \)-cymene, and limonene [5]. \(Trachyspermum \) ammi is another member of the \(Apiaceae \) family, which has analgesic, anti-inflammatory, anxiolytic, and antispasmodic properties [10]. \(Trachyspermum \) ammi is an aromatic seed, which is mainly used as a spice and originates, in the Middle East, India, Iran, Afghanistan, and Egypt. The EO content of the ripe seeds of the plant has been estimated at 2-4% [11].

Nanotechnology has recently attracted the attention of industrialists and scientists for food production [12]. Nanoemulsion is defined as the dispersion of oil in water, with the droplet diameter of 10-100 nanometers [13]. According to the literature, EO nanoemulsions are able to reinforce the bioactive effects of EOs, thereby decreasing the applied concentration of EOs and the effects on the taste and aroma of food [14, 15]. To date, no studies have been focused on the effects of films containing \(Bunium \) persicum essential oil (NBPEO) and \(Trachyspermum \) ammi essential oil (NTEO) on the inhibition of food pathogens in hamburger. The present study aimed to evaluate the effects of the chitosan/CNF film containing the nanoemulsions of NBPEO and NTEO on the growth of \(E. \) coli \(\text{O}_{157}: \text{H}_7 \) inoculated in hamburger in storage conditions at the temperature of \(4 \pm 1 \) °C.

2. Materials and Methods

2.1. Experimental Materials

Chitosan powder was purchased from Sigma-Aldrich (St. Louis, MO, USA) with the medium molecular weight of 450 kDa, and CNF was provided by Nano Novin Polymer (Mazandaran, Iran). The EOs were provided by Nader Mashhad Industry and Cultivate Company (Mashhad, Iran). The applied culture media included the brain heart infusion (BHI) broth, BHI agar and Sorbitol-MacConkey agar which, were purchased from Quelab (Quelab Laboratories Inc., Montreal, Canada). \(E. \) coli \(\text{O}_{157}: \text{H}_7 \) (NCTC 12900) was obtained from the culture collection of the Department of Food Hygiene at the School of Veterinary Sciences of Ferdowsi University of Mashhad, Iran.

2.2. Preparation of the Nanoemulsions

The EO nanoemulsions were prepared based on the method proposed by Hashjin et al. (2015) with modifications. The oil-in-water nanoemulsions were prepared using the NTEO and NBPEO (2 % w/w) as the oil phase and, Tween 80 (2 % w/w), and deionized water (96 % w/w) as the aqueous phase (2 % NTEO and NBPEO with 2 % Tween 80). The emulsions were prepared in two stages. Initially, the oil and aqueous phases (total: 100 g) were placed in a glass beaker and mixed for 15 minutes at room temperature (25°C) using a magnetic stirrer (700 rpm). Afterwards, the obtained nanoemulsions were sonicated (SONOPULS Ultrasonic Homogenizers; BANDELIN, Berlin, Germany) at 50 % amplitude for 15 minutes (pulse: 45 s, rest: 15 s). During the sonication process, the glass beaker was placed in an ice container in order to control the temperature [16]. Following that, the particle size of the nanoemulsions was measured using a dynamic light scattering (DLS) device (Nanophox Sympatec GmbH, Clausthal, Germany).

2.3. Preparation of the Chitosan/CNF Film

To prepare the chitosan solution (2 % w/v in 1 % v/v acetic acid), two grams of chitosan was mixed with 100 milliliters of distilled water. Afterwards, the obtained solution was stirred for one hour using a hotplate magnetic stirrer in order to achieve transparency. At the next stage, glycerol was selected as the plasticizer, added to chitosan (0.75 ml/g), and mixed for 30 minutes. Simultaneously, 7.5% CNF was added to the solution, and stirring continued for another 30 minutes. Following that, the chitosan solutions were placed at the center of teflon plates and dried at an ambient temperature (25°C) for 48 hours [17].

2.4. Preparation of the Chitosan/CNF/NTEO/NBPEO Film

In order to prepare the film containing NBPEO and NTEO, the EO nanoemulsions were added to the chitosan solution. After achieving the final NBPEO concentration of 0.8% and NTEO concentration of 1.6% (v/v), the film-forming solutions were placed at the center of teflon plates and dried at an ambient temperature (25°C) for 48 hours [17].

2.5. Preparation of \(E. \) coli \(\text{O}_{157}: \text{H}_7 \)

At this stage, \(E. \) coli \(\text{O}_{157}: \text{H}_7 \) was cultured on the BHI broth and incubated at the temperature of 37 °C for 24 hours. Following that, the cultured samples were re-incubated at the temperature of 37 °C for another 18 hours. The 18-hour culture was also performed to obtain the bacterial suspension with 0.5 McFarland turbidity standard (1.5×10^8 CFU/ml) [18].
2.6. Preparation of the Treatments

After purchasing beef and fat from a local market, a three-millimeter plate was used to grind the meat samples. Based on the weight of the meat, hamburgers were prepared by mixing the ground lean beef with beef fat (12.5%), potable water (10%), salt (1%), onion powder (1%), garlic powder (1%), and black pepper (0.5%). Following that, the bacterial suspension was used for the direct inoculation of the hamburgers with the final bacterial concentration of \(-10^6\) CFU/g [19]. To prepare the hamburgers, 50 grams of the mixture were placed on a plastic wrap and pressed by a manual hamburger press machine. The mean diameter and thickness of the hamburgers was 11 and 0.8 centimeters, respectively. Both surfaces of the hamburgers were coated with the film formulations, while the control samples had no coating (Table 1). At the next stage, the prepared samples were stored at the temperature of 4 ± 1 °C for 12 days, and periodic microbiological analysis was performed on days zero, three, six, nine, and 12.

2.7. Microbial Analysis

The hamburgers (10 g) were brought to the final volume of 90 milliliters of 0.1% sterile peptone water and homogenized for three minutes using a stomacher (Seward Medical, London, UK). After the preparation of the decimal dilutions, the drop plate method was employed at 10 microliters in order to culture the homogenate serial dilutions onto the Sorbitol-MacConkey agar, and the homogenates were incubated at the temperature of 37 °C for 24 hours. Finally, the bacterial counts were expressed as log10 CFU/g of the samples [18].

2.8. Statistical Analysis

Data analysis was performed in SPSS version 21 (SPSS Inc., Chicago, USA) using one-way analysis of variance (ANOVA), Bonferroni post-hoc test, and Dunnett test at the significance level of \(P < 0.05\). All the experiments were performed in triplicate.

3. Result and Discussion

The particle size of NTEO and NBPEO was measured using a dynamic light scattering (DLS) device, and estimated at 90.21 and 97 nanometers, respectively. The optimal size of the nanoparticles was within the range of 10–100 nanometers [13].

Initially, the \(E. coli\) O157:H7 count was estimated at 5.5 log CFU/g in the control group, which was higher compared to the treatment groups (Figure 1). However, the value decreased to 5.3 log CFU/g after the storage period. The final bacterial counts in the treatment groups were estimated at 4.5 and 4 log CFU/g with the Ch–NCF and Ch-CNF–NEOs films, respectively.

According to the findings of the current research, the growth of \(E. coli\) O157:H7 reduced at the temperature of 4 ± 1 °C in the treatment groups, which is in line with the previous studies in this regard [5,18]. Furthermore, the Ch–NCF and Ch-CNF–NEOs films had significant differences with the non-coated hamburger samples \((P < 0.05)\), which is consistent with the previous findings in this regard [5, 20, 21]. Contrary to these results, Shekarforoush et al. (2015) reported that chitosan had no inhibitory effects against \(E. coli\) O157:H7 inoculated in ready-to-eat chicken meat stored at various temperatures (3 °C, 8 °C, and 20 °C) [22]. Chitosan activity is largely affected by incubation temperature, bacterial strain, and type of food substrate [21]. In the present study, the inhibitory effect of the Ch-CNF–NEOs film on \(E. coli\) O157:H7 was more significant compared to the Ch-NCF film \((P < 0.05)\). In a similar research, Zivanovic et al. (2005) used pure chitosan films, reporting the reduction of the \(E. coli\) O157:H7 count in bologna. In the mentioned study, the chitosan films were enriched with 1% and 2% oregano EO and proved adequate for the reduction of \(E. coli\) O157:H7 by three logs on the bologna slices [20]. In another research, Raji et al. (2019) used the combination treatment of chitosan coating and, EOs (\(Zataria multiflora\) and \(Bunium persicum\) in rainbow trout fillets, and the application of vacuum packs was reported to diminish the \(E. coli\) count to undetectable levels [5]. Several studies have confirmed the antibacterial activity of chitosan films enriched with various EOs against \(E. coli\) O157:H7 [6, 20]. For instance, Shekarforoush et al. (2015) claimed that the combination of chitosan and oregano EO had antibacterial activity against \(E. coli\) O157:H7 in ready-to-eat chicken [22]. Furthermore, Severino et al. (2014) reported that modified chitosan based coating containing the nanoeumulsion of carvacrol exhibited strong antibacterial activity against \(E. coli\) inoculated in green bean samples during the storage period [23]. On the other hand, Wang et al. (2011) employed chitosan-cinnamon and chitosan-clove EO films, reporting their significant antimicrobial effects against \(E. coli\), while the chitosan-star anise EO film showed no antibacterial activity in the mentioned research [24]. On the same note, Shoja Gharehbagh et al. (2017) investigated the antibacterial effects of chitosan films incorporated with 2% \(Zataria multiflora\) EO, and the growth inhibition zone of \(E. coli\) was reported to be 27.7 millimeters [25]. In line with these findings, Hamedi et al. (2019) reported that chitosan/alginate films loaded with antibacterial Thyme oil nanoeumulsions could decrease the growth of \(E. coli\) in vitro [26].

Table 1: List of treatments

<table>
<thead>
<tr>
<th>No</th>
<th>Treatment</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CON</td>
<td>Control: Hamburgers without any film</td>
</tr>
<tr>
<td>2</td>
<td>Ch-CNF</td>
<td>Hamburgers with chitosan film containing 7.5% cellulose nanofiber without any nanoeumulsion of essential oil</td>
</tr>
<tr>
<td>3</td>
<td>Ch-CNF–NEOs</td>
<td>Hamburgers with chitosan film containing 7.5% cellulose nanofiber, 0.8% (Bunium persicum) essential oil and 1.6% (Trachyspermum ammi) essential oil</td>
</tr>
</tbody>
</table>

Table 2: Mean reduction rate of \(E. coli\) O157:H7 counts (Log CFU/g) in Comparison of treatments Groups during 12 days of storage at 4±1°C (Mean Difference 1–J)

<table>
<thead>
<tr>
<th>Group (I)</th>
<th>CON</th>
<th>Ch-CNF</th>
<th>Ch-CNF–NEOs</th>
</tr>
</thead>
<tbody>
<tr>
<td>CON</td>
<td>0.43</td>
<td>0.80</td>
<td>0.34</td>
</tr>
<tr>
<td>Ch-CNF</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(P < 0.05\) *
4. Conclusion

According to the results, the Ch-CN and Ch-CN-OE films exerted antibacterial effects against the inoculated E. coli O157:H7 in the hamburger samples during 12 days of storage at refrigerated temperature. In addition, Ch-CN-OE films had the most significant inhibitory effects on the bacterial growth. Therefore, it could be concluded that edible films composed of chitosan/CNF, NBPEO, and NTEO are novel approaches to enhancing the microbial safety of perishable food products (e.g., meat and meat products), and it is proposed that Ch-CN-OE films be practically used in the meat industry.

Authors’ Contributions
B.S., performed the laboratory tasks, S.Kh., designed the study M.H., revised the manuscript, and M.A., performed the statistical analysis of the data.

Conflict of Interest
The Authors declare that there is no conflict of interest.

Acknowledgments
Hereby, we extend our gratitude to Ferdowsi University of Mashhad, Mashhad, Iran for the financial support of this study (Grant No. 3/3/4855). We would also like to thank Mrs. S. Khajenasiri for the laboratory support and her kind cooperation.

References

How to cite: Soltaninezhad B, Khanzadi S, Hashemi M, Azizzadeh M. The Inhibition of *Escherichia coli* O157:H7 Inoculated in Hamburger Using a Chitosan/Cellulose Nanofiber Film Containing the Nanoemulsion of *Trachyspermum ammi* and *Bunium persicum* Essential Oils. *J Hum Environ Health Promot*. 2020; 6(1): 30-4.