Volume 27, Issue 121 (March-April 2019)                   J Adv Med Biomed Res 2019, 27(121): 16-22 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Parandin R, Yousofvand N. Foeniculum vulgare (Fennel) Effects on Puberty Timing, Reproductive Function and Behaviour in Adult Female Mice Following Neonatal Exposure. J Adv Med Biomed Res. 2019; 27 (121) :16-22
URL: http://zums.ac.ir/journal/article-1-4892-en.html
Dept. of Biology, Faculty of Sciences, Payame Noor University, Iran , rahmatparandin@pnu.ac.ir
Abstract:   (981 Views)

Background & Objective: Fennel, as an edible plant, and due to its estrogenic compounds, has widely been used as a therapeutic agent for centuries. In this study, the effects of neonatal exposure to fennel alcoholic extract (FAE), on the onset of puberty, estrus cycle, ovaries, and lordosis were investigated.
Materials & Methods: In this experimental study, 48 female BALB/c pups were divided into 4 groups: control (without treatment), treatment with estradiol benzoate (EB), 100 and 200 (mg/kg bw) FAE that were daily administered for 5 days from birth.
Results: The age at vaginal opening (VO) was significantly earlier in EB and 200 FAE. Body weight at VO was lower than control only in EB. A disrupted estrus cycle, decreased number of cycles and increased index diestrus were observed in EB and 200 FAE treated mice. Ovary weight in the EB-, 100- and 200 FAE-treated groups were lower. The number of Graafian follicles in the EB-, 100- and 200 FAE and number of corpus luteum in the EB and 200 FAE groups were lower than that of control females. Estradiol concentration increased in the EB and 200 FAE and LH concentration decreased in the EB-, 100- and 200 FAE groups. The lordosis quotient (LQ) was significantly low in the EB- and 200 FAE-treated groups, vis-à-vis the control group.
Conclusion: The present results indicated that neonatal exposure to FAE induces early VO and disrupts ovary function. In addition, fennel acts like xenoestrogens and causes defeminization of the brain in the estrus cycle as well as lordosis in mice.

Full-Text [PDF 312 kb]   (388 Downloads) |   |   Full-Text (HTML)  (62 Views)  

✅ The present results indicated that neonatal exposure to FAE induces early VO and disrupts ovary function. In addition, fennel acts like xenoestrogens and causes defeminization of the brain in the estrus cycle as well as lordosis in mice.


Type of Study: Original | Subject: Medical laboratory and animal investigation
Received: 2018/04/26 | Accepted: 2019/09/6 | Published: 2019/06/22

References
1. Liu ZH, Kanjo Y, Mizutani S. A review of phytoestrogens: their occurrence and fate in the environment. Water Res. 2010; 44(2): 567-77. [DOI:10.1016/j.watres.2009.03.025] [PMID]
2. Jefferson WN, Patisaul HB, Williams CJ. Reproductive consequences of evelopmental phytoestrogen exposure. Reproduction. 2012; 143(2): 247-60. [DOI:10.1530/REP-11-0369] [PMID] [PMCID]
3. Roy JR, Chakraborty S, Chakraborty TR. Estrogen-like endocrine disrupting chemicals affecting puberty in humans--a review. Med Sci Monit. 2009; 15(6): 137-45.
4. Tena-Sempere M. The Kisspeptin System as Putative Target for Endocrine Disruption of Puberty and Reproductive Health. In 'Multi-System Endocrine Disruption'. (Eds Bourguignon JP, Jegou B, Kerdelhue B, Toppari J, Christen Y). Springer-Verlag- Berlin. 2011; pp. 23-41. [DOI:10.1007/978-3-642-22775-2_2]
5. Sifakis S, Androutsopoulos VP, Tsatsakis AM, Spandidos DA. Human exposure to endocrine disrupting chemicals: effects on the male and female reproductive systems. Environ Toxicol Pharmacol. 2017; 51: 56-70. [DOI:10.1016/j.etap.2017.02.024] [PMID]
6. Kouki T, Kishitake M, Okamoto M, Oosuka I, Takebe M, Yamanouchi K. Effects of neonatal treatment with phytoestrogens, genistein and daidzein, on sex difference in female rat brain function: estrous cycle and lordosis. Horm Behav. 2003; 44(2): 140-5. [DOI:10.1016/S0018-506X(03)00122-3]
7. Kouki T, Okamoto M, Wada S, Kishitake M, Yamanouchi K. Suppressive effect of neonatal treatment with a phytoestrogen, coumestrol, on lordosis and estrous cycle in female rats. Brain Res Bull. 2005; 64(5): 449-54. [DOI:10.1016/j.brainresbull.2004.10.002] [PMID]
8. Parandin R, Behnam-Rassouli M, Mahdavi-Shahri N. Effects of neonatal exposure to zearalenone on puberty timing, hypothalamic nuclei of AVPV and ARC, and reproductive functions in female mice. Reprod Sci. 2005; 24(9): 1293-303. [DOI:10.1177/1933719116683808] [PMID]
9. Wilson CA, Davies DC. The control of sexual differentiation of the reproductive system and brain. Reproduction. 2007; 133(2): 331-59. [DOI:10.1530/REP-06-0078] [PMID]
10. Cao J, Patisaul HB. Sexually dimorphic expression of hypothalamic estrogen receptors α and β and kiss1 in neonatal male and female rats. J Comp Neurol. 2011; 19(15): 2954-77. [DOI:10.1002/cne.22648] [PMID] [PMCID]
11. Badgujar SB, Patel VV, Bandivdekar AH. Foeniculum vulgare Mill: a review of its botany, phytochemistry, pharmacology, contemporary application, and toxicology. Biomed Res Int. 2014; 2014: 842674. [DOI:10.1155/2014/842674] [PMID] [PMCID]
12. Albert-Puleo M. Fennel and anise as estrogenic agents. J Ethnopharmacol. 1980; 2(4): 334-44. [DOI:10.1016/S0378-8741(80)81015-4]
13. Rather MA, Dar BA, Sofi SN, Bhat BA, Qurishi MA. Foeniculum vulgare: A comprehensive review of its traditional use, phytochemistry, pharmacology, and safety. Arab J Chem. 2016; 9: 1574-83. [DOI:10.1016/j.arabjc.2012.04.011]
14. Khazaei M, Montaseri A, Khazaei MR, Khanahmadi M. Study of Foeniculum vulgare effect on folliculogenesis in female mice. Int J Fertil Steril. 2011; 5(3): 122-7.
15. Fox JG, Davisson MT, Quimby FW, Barthold SW, Newcomer CE, Smith AL. 'The mouse in biomedical research: Normative Biology, Husbandry, and Models.' 2nd edn. 2007; (Academic Press, New York.).
16. Caligioni CS. Assessing reproductive status/stages in mice. Curr Protoc Neurosci. 2009; Appendix 4: Appendix 4I. [DOI:10.1002/0471142301.nsa04is48] [PMCID]
17. Nwafor PA, Egwu G, Jahn GA, Deis RP. Effects of methanolic extract of Asparagus pubescens root on sexual behavior and pituitary hormone secretion on wistar rats during pregnancy and lactation. J Ethnopharmacol. 2007; 113(3): 492-7. [DOI:10.1016/j.jep.2007.07.002] [PMID]
18. Avitsur R, Yirmiya R. The partner preference paradigm: a method to study sexual motivation and performance of female rats. Brain Res Prot. 1999; 3(3): 320-25. [DOI:10.1016/S1385-299X(98)00057-9]
19. Willoughby KN, Sarkar AJ, Boyadjieva NI, Sarkar DK. Neonatally administered tert-octylphenol affects onset of puberty and reproductive development in female rats. Endocrine. 2005; 26(2): 161-68. [DOI:10.1385/ENDO:26:2:161]
20. Faber KA, Hughes CL .The effect of neonatel exposure to diethylstiblbestrol genistein and zearalenone on pituitary responsiveness and sexually dim orphic nucleus volume in the castrated adult rat. Biol Reprod. 1991; 45(4): 649-53. [DOI:10.1095/biolreprod45.4.649] [PMID]
21. Parandin R, Behnam-Rassouli M, Mahdavi-Shahri N. Oestrogenic action of neonatal tamoxifen on the hypothalamus and reproductive system in female mice. Reprod Fertil Dev. 2016; 29(5): 1012-20. [DOI:10.1071/RD15361] [PMID]
22. Losa-Ward SM, Todd KL, McCaffrey KA, Tsutsui K, Patisaul HB. Disrupted organization of rfamide pathways in the hypothalamus is associated with advanced puberty in female rats neonatally exposed to bisphenol A. Biol Reprod. 2012; 87(2): 28. [DOI:10.1095/biolreprod.112.100826] [PMID] [PMCID]
23. Brill DS, Moenter SM. Androgen receptor antagonism and an insulin sensitizer block the advancement of vaginal opening by high-fat diet in mice. Biol Reprod. 2009; 81(6): 1093-8. [DOI:10.1095/biolreprod.109.079301] [PMID] [PMCID]
24. Sisk CL, Foster DL. The neural basis of puberty and adolescence. Nat Neurosci. 2004; 10: 1040-47. [DOI:10.1038/nn1326] [PMID]
25. Andrews WW, Advis JP, Ojeda SR. The maturation of estradiol-negative feedback in female rats: evidence that the resetting of the hypothalamic ''gonadostat'' does not precede the first preovulatory surge of gonadotropins. Endocrinology. 1981; 109(6): 2022-31. [DOI:10.1210/endo-109-6-2022] [PMID]
26. Honma S, Suzuki A, Buchanan DL, Katsu Y, Watanabe H, Iguchi Y. Low dose effect of in utero exposure to bisphenol A and diethylstilbestrol on female mouse reproduction. Reprod Toxicol. 2002; 16(2): 117-22. [DOI:10.1016/S0890-6238(02)00006-0]
27. Wiegand SJ, Terasawa E, Bridson WE, Goy RW. Effects of discrete lesions of preoptic and suprachiasmatic structures in the female rat. Alterations in the feedback regulation of gonadotropin secretion. Neuroendocrinol. 1980; 31(2): 147-57. [DOI:10.1159/000123066] [PMID]
28. May PC, Kohama SG, Finch CE. N-methyl-aspartic acid lesions of the arcuate nucleus in adult C57BL/6J mice: a new model for age-related lengthening of the estrous cycle. Neuroendocrinol. 1989; 50(5): 605-12. [DOI:10.1159/000125288] [PMID]
29. Terasawa E, Fernandez DL. Neurobiological mechanisms of the onset of puberty in primates. Endocr Rev. 2001; 22(1): 111-51. https://doi.org/10.1210/edrv.22.1.0418 [DOI:10.1210/er.22.1.111] [PMID]
30. Tsukahara S. Sex differences and the roles of sex steroids in apoptosis of sexually dimorphic nuclei of the preoptic area in postnatal rats. J Neuroendocrinol. 2009; 21(4): 370-76. [DOI:10.1111/j.1365-2826.2009.01855.x] [PMID]
31. Mc Carthy MM. Estradiol and the developing brain. Physiol Rev. 2008; 88(1): 91-124. [DOI:10.1152/physrev.00010.2007] [PMID] [PMCID]
32. Ksheerasagar RL, Kaliwal BB. Effects of carbosulfan administration schedules on estrous cycle and follicular dynamics in albino mice. Ind Health. 2008; 46(3): 210-16. doi:10.2486/indhealth.46.210 [DOI:10.2486/indhealth.46.210] [PMID]
33. Ogbuehi IH, Ebong OO, Obianime AW. A preliminary study on the effect of Abrus precatorius Linn on Reproductive Parameters in Female Rattus norvegicus, wistar strain. European J Med Plants. 2015; 7: 156-166. [DOI:10.9734/EJMP/2015/15271]
34. Nakagawa Y, Suzuki T. Cytotoxic and xenoestrogenic effects via biotransformation of trans-anethole on isolated rat hepatocytes and cultured MCF-7 human breast cancer cells. Biochem Pharmacol. 2003; 66(1): 63-73. [DOI:10.1016/S0006-2952(03)00208-9]
35. Nagel SC, vom Saal FS, Thayer KA, Dhar MG, Boechler M, Welshons WV. Relative binding affinity-serum modified access (RBA-SMA) assay predicts the relative in vivo bioactivity of the xenoestrogens bisphenol A and octylphenol. Environ Heath Perspect. 1997; 105(1): 70-6. [DOI:10.1289/ehp.9710570] [PMID] [PMCID]
36. Vom Saal FS, Cooke PS, Buchanan DL, et al. A physiologically based approach to the study of bisphenol A and other estrogenic chemicals on the size of reproductive organs, daily sperm production, and behavior. Toxicol Ind Health. 1998; 14(1-2): 239-60. [DOI:10.1177/074823379801400115] [PMID]
37. Gaido KW, Leonard LS, Lovell S, et al. Evaluation of chemicals with endocrine modulating activity in a yeast-based steroid hormone receptor gene transcription assay. Toxicol Appl Pharmacol. 1997; 143(1): 205-12. [DOI:10.1006/taap.1996.8069] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


© 2020 All Rights Reserved | J Adv Med Biomed Res

Designed & Developed by : Yektaweb  Co-Publisher: Farname Inc.