Volume 27, Issue 121 (March-April 2019)                   J Adv Med Biomed Res 2019, 27(121): 48-53 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Asadi F, Sadeghzadeh M, Jalilvand A, Nedaei K, Asadi Y, Heidari A. Effect of Molybdenum Trioxide Nanoparticles on Ovary Function in Female Rats. J Adv Med Biomed Res. 2019; 27 (121) :48-53
URL: http://zums.ac.ir/journal/article-1-5388-en.html
1- Dept. of Pediatrics, Mousavi Hospital, Zanjan University of Medical Sciences, Zanjan, Iran
2- Dept. of Pathology, Mousavi Hospital, Zanjan University of Medical Sciences, Zanjan, Iran
3- Dept. of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
4- National Nutrition of Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
5- Dept. of Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran , a.c.heidari@gmail.com
Abstract:   (3109 Views)

Background & Objective: Molybdenum trioxide nanoparticles (MoO3 NPs) have widespread applications in industries. However, the toxic and non-toxic effects of MoO3 NPs have not been fully investigated yet. In this study, effects of MoO3 NPs on ovary function of female rats were studied.
Materials & Methods: In this study, 21 female rats were randomly divided into three groups (n=7): the first group did not receive any treatment, the second one received normal saline, and the third group received 5 mg/kg MoO3 NPs in normal saline via intraperitoneal injection during a period of 28 days. Serum concentrations of estrogen, progesterone, luteinizing hormone, and follicle stimulating hormone were measured. Also, changes of ovaries, uterine weights, uterine, and length of uterine horns were studied.
Results: The serum level of estrogen in the MoO3 NPs exposed group was significantly attenuated; those of luteinizing hormones and follicle stimulating hormone were elevated while progesterone level change was insignificant. The weights of the right ovary and the uterine body decreased significantly in the exposed group.
Conclusion: Our data showed that MoO3 nanoparticle exposure could cause an imbalance of sex hormones and decrease in body and ovarian weights in thefemale rats.

Full-Text [PDF 231 kb]   (1750 Downloads) |   |   Full-Text (HTML)  (108 Views)  

✅ Our data showed that MoO3 nanoparticle exposure could cause an imbalance of sex hormones and decrease in body and ovarian weights in thefemale rats.

Type of Study: Original | Subject: Medical laboratory and animal investigation
Received: 2018/12/3 | Accepted: 2019/04/25 | Published: 2019/06/22

1. Cheng L, Shao M, Wang X, Hu H. Single-crystalline molybdenum trioxide nanoribbons: photocatalytic, photoconductive, and electrochemical properties. Chem Eur J. 2009; 15(10): 2310-16. [DOI:10.1002/chem.200802182] [PMID]
2. Krishnamoorthy K, Veerapandian M, Yun K, Kim SJ. New function of molybdenum trioxide nanoplates: Toxicity towards pathogenic bacteria through membrane stress. Colloids Surf B Biointerfaces.
3. Akhtar MJ, Ahamed M, Alhadlaq HA, Alshamsan A, Khan MA, Alrokayan SA. Antioxidative and cytoprotective response elicited by molybdenum nanoparticles in human cells. J Colloid Interface Sci.
4. Ema M, Kobayashi N, Naya M, Hanai S, Nakanish J. Reproductive and developmental toxicity studies of manufactured nanomaterials. Reprod Toxicol. 2010; 30(3): 343-2. [DOI:10.1016/j.reprotox.2010.06.002] [PMID]
5. Siddiqui MA, Saquib Q, Ahamed M, et al. Molybdenum nanoparticles-induced cytotoxicity, oxidative stress,G2/M arrest, and DNA damage in mouse skin fibroblast cells (L929). Colloids Surf B Biointerfaces. 2015; 125: 73-1. [DOI:10.1016/j.colsurfb.2014.11.014] [PMID]
6. Fakhri A, Nejad PA. Antimicrobial, antioxidant and cytotoxic effect of Molybdenum trioxide nanoparticles and application of this for degradation of ketamine under different light illumination. J Photochem Photobiol B. 2016; 159: 211-7. [DOI:10.1016/j.jphotobiol.2016.04.002] [PMID]
7. Schwarz G, Mendel RR, Ribbe MW. Molybdenum cofactors, enzymes and pathways. Nature. 2009; 460(7257): 839-7. [DOI:10.1038/nature08302] [PMID]
8. Kikuchi K, Hamano S, Mochizuki H, Ichida K, Ida H. Molybdenum cofactor deficiency mimics cerebral palsy: differentiating factors for diagnosis. Pediatr Neurol. 2012; 47(2): 147-9. [DOI:10.1016/j.pediatrneurol.2012.04.013] [PMID]
9. Shrivas K, Agrawal K, Harmukh N. Trace level determination of molybdenum in environmental and biological samples using surfactant-mediated liquid-liquid extraction. J Hazard Mater. 2009; 161(1): 325-9. [DOI:10.1016/j.jhazmat.2008.03.092] [PMID]
10. Thakur M, Gupta H, Singh D, et al. Histopathological and ultra structural effects of nanoparticles on rat testis following 90 days (Chronic study) of repeated oral administration. J Nanobiotechnology. 2014; 12: 42-4. [DOI:10.1186/s12951-014-0042-8] [PMID] [PMCID]
11. Oberdörster G, Maynard A, Donaldson K, et al. Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol. 2005; 2: 8. 1-35. [DOI:10.1186/1743-8977-2-8] [PMID] [PMCID]
12. Capasso L, Camatini M, Gualtieri M. Nickel oxide nanoparticles induce inflammation and genotoxic effect in lung epithelial cells. Toxicol Lett. 2014; 226(1): 28-4. [DOI:10.1016/j.toxlet.2014.01.040] [PMID]
13. Braydich-Stolle L, Hussain S, Schlager JJ, Hofmann MC. In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol Sci. 2005; 88(2): 412-9. [DOI:10.1093/toxsci/kfi256] [PMID] [PMCID]
14. Asadi F, Mohseni M, Dadashi-N K, Haj-Soleymani F, Jalilvand A, Heidari A. Effect of Molybdenum Nanoparticles on Blood Cells, Liver Enzymes, and Sexual Hormones in Male Rats. Biol Trace Elem Res. 2017; 175(1): 50-56. [DOI:10.1007/s12011-016-0765-5] [PMID]
15. Asadi F, Amirmoghaddami H, Shamseddin M, Nedaeei K, Heidari A. Effect of Molybdenum Trioxide Nanoparticles on Thyroid Hormones in Female Rats. J Hum Environ Health Promot. 2016; 1(4): 189-95. [DOI:10.29252/jhehp.1.4.189]
16. Iavicoli I, Fontana L, Leso V, Bergamaschi A. The Effects of Nanomaterials as Endocrine Disruptors. Int J Mol Sci. 2013; 14(8): 16732-1. [DOI:10.3390/ijms140816732] [PMID] [PMCID]
17. Lu PJ, Ho IC, Lee TC. Induction of sister chromatid exchanges and micronuclei by titanium dioxide in Chinese hamster ovary-K1 cells. Mutat Res. 1998; 414(1-3): 15-20. [DOI:10.1016/S1383-5718(98)00034-5]
18. Zhao X, Ze Y, Gao G, et al. Nanosized TiO2-Induced Reproductive System, Dysfunction and Its Mechanism in Female Mice. Plos one. 2013; 8(4): 59378. [DOI:10.1371/journal.pone.0059378] [PMID] [PMCID]
19. Kong L, Tang M, Zhang T, et al. Nickel nanoparticles exposure and reproductive toxicity in healthy adult rats. Int J Mol Sci, 2014; 15(11): 21253-9. [DOI:10.3390/ijms151121253] [PMID] [PMCID]
20. Batiuskaite D, Grinceviciute N, Snitka V. Impact of graphene oxide on viability of Chinese hamster ovary and mouse hepatoma MH-22A cells. Toxicol in Vitro. 2015; 29(5): 1195-200. [DOI:10.1016/j.tiv.2015.05.004] [PMID]
21. Di-Virgilio AL, Reigosa M, Arnal PM, Lorenzo de Melea MF. Comparative study of the cytotoxic and genotoxic effects of titanium oxide andaluminium oxide nanoparticles in Chinese hamster ovary (CHO-K1) cells. J Hazard Mater. 2010; 177(1-3): 711-8. [DOI:10.1016/j.jhazmat.2009.12.089] [PMID]
22. Liu XQ, Zhang HF, Zhang WD, et al. Regulation of neuroendocrine cells and neuron factors in the ovary by zinc oxide nanoparticles. Toxicol Lett. 2016; 256: 19-2. [DOI:10.1016/j.toxlet.2016.05.007] [PMID]
23. Jo E, Seo G, Kwon JT, et al. Exposure to zinc oxide nanoparticles affects reproductive development and biodistribution in offspring rats. J Toxicol Sci. 2013; 38(4): 525-30. [DOI:10.2131/jts.38.525] [PMID]
24. Esmaeillou M, Moharamnejad M, Hsankhani R, Tehrani AA, Maadi H. Toxicity of ZnO nanoparticles in healthy adult mice. Environ Toxicol Pharmacol. 2013; 35(1): 67-71. [DOI:10.1016/j.etap.2012.11.003] [PMID]
25. Sun J, Zhang Q, Wang Z, Yan B. Effects of Nanotoxicity on Female Reproductivity and Fetal Development in Animal Models. Int J Mol Sci. 2013; 14(5): 9319-37. [DOI:10.3390/ijms14059319] [PMID] [PMCID]
26. Asadi F, Fazelipour S, Hooshmand Abbasi R, et al. Assessment of Ovarian Follicles and Serum Reproductive Hormones in Molybdenum Trioxide Nanoparticles Treated Rats. Int J Morphol. 2017; 35(4): 1473-81. [DOI:10.4067/S0717-95022017000401473]
27. Graham JD, Clarke CL. Physiological action of progesterone in target tissues. Endocr Rev. 1997; 18(4): 502-19. https://doi.org/10.1210/edrv.18.4.0308 [DOI:10.1210/er.18.4.502] [PMID]
28. Kim HY, Lee SB, Lim KT, Kim MK, Kim JC. Subchronic inhalation toxicity study of 1,3-dichloro-2-propanol in rats. Ann Occupl Hyg. 2007; 51(7): 633-43.
29. Chatterjee-Chakrabarty S, Miller BT, Collins TJ, Nagamani M. Adverse effects of methylphenidate on the reproductive axis of adolescent female rats. Fertil Steril. 2005; 2: 1131-8. [DOI:10.1016/j.fertnstert.2005.03.071] [PMID]
30. Weihua Z, Saji S, Makinen S, et al. Estrogen receptor (ER) beta, a modulator of ERalpha in the uterus. PNAS. 2000; 97(11): 5936-41. [DOI:10.1073/pnas.97.11.5936] [PMID] [PMCID]
31. Alwasel S. Effect of Maternal Food Restriction on the Uterus of Female Rats from the First and Second Generation. Advances in Reproductive Sciences. 2016; 4: 23-30. [DOI:10.4236/arsci.2016.42004]
32. Jiang J, Wang J, Zhang X, et al. Activation of mitogen-activated protein kinases cellular signal transduction pathway in mammalian cells induced by silicon carbide nanowires. Biomaterials. 2010; 31(31): 7856-62. [DOI:10.1016/j.biomaterials.2010.07.024] [PMID]
33. Xu G, Lin S, Law WC, et al. The invasion and reproductive toxicity of QDs-transferrin bioconjugates on preantral follicle in vitro. Theranostics. 2012; 2(7): 734-45. [DOI:10.7150/thno.4290] [PMID] [PMCID]

Add your comments about this article : Your username or Email:

Send email to the article author

© 2020 All Rights Reserved | Journal of Advances in Medical and Biomedical Research

Designed & Developed by : Yektaweb  Co-Publisher: Farname Inc.