ازن و کاهش آن در استراتوسفر

مهندس مبتلا غلامی
عضو هیئت علمی دانشگاه علوم پزشکی و خدمات بهداشتی درمانی استان زنجان

خلاصه:

ازن گازی است به رنگ آبي کمرنگ، با بوي تند كه در غلظت‌های کمتر از 1 ppm وجود دارد. ازن به طور طبیعی در لايه استراتوسفر با شکسته شدن اکسیژن و تركيب اتم اکسیژن با یک مولکول اکسیژن در جابجایي که اشعه ماوراء بنفش وجود دارد و به عنوان منبع انتريزي به کار می‌رود، توليد مي‌گردد. ازن نه تنها در آلوگردي هوا، بلکه نقش مهمي كه در توليد اكسيدان های توهيمي دارد، حائز اهميت بوده بلکه وجود آن در استراتوسفر سبب محazı وضع زمين از تابش بينه حداکثر جذب اشعه ماوراء بنفش، مي‌گردد. بنابراین اگر ليا ازن کاهش يابد تابش اشعه نوى الذكر به سطح زمين بيشتر مي‌شود.

ازن به طور مداوم در استراتوسفر توسط جذب اشعه ماوراء بنفش با طول موج كوتاه توليد مي‌شود. در همان زمان به طور مداوم اين گاز بوستيکي و اکسیژنی مختلف كه سبب شکسته شدن و تبديل آن به مولکول اكسيژن مي‌شود، از استراتوسفر حذف مي‌گردد.

ميان توليد و حذف اين گاز در هر زمان تعیین گنتنده غلظت ازن است.

افزایش غلظت هاي استراتوسفری كه، نتیجه ف ora و برخيم كه سبب انزایين سرعت واکنش حذف ازن مي‌گردد، در تعادل بین توليد و حذف آن تأثیر مي‌گذارد. يکي از مهمترین گازهایي كه سبب از بين رتن ازن مي‌شود، كنولروفوررين است. گازهای دينغري كه در كاهش ازن مؤثرند، عبارتند از: N2O، CH4، CO2، NO2، C2H6، C2H4، C2H2، N2 و C2H5OH. باعث کاهش ازن مي‌شوند.

مطالعات نشان داده که برخيم كه در مياکويري و نتایج انحلال (فلوروروررينها) كه شامل اتم های برخيم هستند و در آتش خاموش شدنها به كار مي‌روند.

چون ازن اشعه ماوراء بنفش با طول موج كوتاه را قبل از اين كه به زمين برسد، جذب
می‌کند، از بین رفتن این احتمال در معرض قرار گرفتن اشعه ماورای بیانش را غلبه شد.

می‌دهم.

این اشعه سبب بیماری‌ها جهان سرطان پوست، آب مراوی‌های مایه و همچنین روی سیستم ایمنی تاثیر می‌گذارد. تاکید شدید این اشعه تاثیر نامطلوبی روی گیاهان و ارگانیسم‌های دیگر نیز گذاشته است.

مقدمه:

ازن به یک آنتی‌بیوتیک از آکسیژن اطلالی می‌شد. گازی است با رنگ آبی کموکنگ، با یو ندی‌که در غلظت‌های کمتر از 16 PPM (یک قسمت میلی‌پروپان) در هوا نیز وجود دارد. رنگ گاز در غلظت‌های طبیعی از آن مشاهده می‌شود. حالات از آن در تقریباً 15 ثانیه سیستم اکسیژن در آپ‌بیشاند. با این وجود در عمل مقداری که از آن تنادید در آپ حل گردیده است. حالات از آن قانون هنری نبیعت می‌کند و بسگی به فشار جریان یا کل فشار موجود در سیستم دارد. از آنجا که این به طور طبیعی در غلظت‌های پایین تولید می‌شود، نشان دهنده نیز بنیان می‌باشد. وزن مولکулی از آن 48 و دانستنی آن در صفحه پرچم سانی‌گردا (یک گرم در لیتر می‌باشد، نقطه گری جوش آن در 111-19 درجه سانتی‌گراد و نقطه دوب آن در 251-2 درجه سانتی‌گراد می‌باشد. در سال 1885 در طب یک تجربهکنی الکترودی متوسط تولید بود خاصی نشد. در سال 1840 ثابت کرد که این یک ناشی از اگزک مخصوص است که این گاز را از آن نمیداند. از Czinc در زبان پوئنی به معنی پوردتین است. اولین دستگاه تولید "siemens" سال 1872.
ازن در ارتفاع حدود ۲۰ کیلومتر بالایی جو توسط تجزیه نوری مولکول‌های اکسیژن تشکیل می‌شود. جذب اشعه با طول موج کوتاه الکترومغناطیسی سبب تحریک الکترون‌های مولکول اکسیژن شده و ارتباطی با انتزاع بالا یپوند در انرژی اکسیژن را می‌کشد و سیاست شکستگی مولکول می‌گردد. این بیانگر در صورتی است که می‌تواند شکستگی مولکول‌های اکسیژن باشد. اگر E آزمایشگر انرژی جذب شده باشد واکنش مرحله اول مترولید از bên بفرار Zیر است:

\[O_{2} + E \rightarrow O_{2} + O \]

هر یک از اتم‌های اکسیژن تولیدی به سرعت با مولکول اکسیژن ترکیب شده و ازین تشکیل می‌شود.

\[O_{2} + O_{2} + M \rightarrow O_{3} + M \]

نمایانگی سایر مولکول‌ها مثل نی، N، بهترین گرفتن انتزاع‌های نیاکننده، فوراً وارد فعل و انفعال با O، O، O، و M سیانوکسون می‌شود. ممکن است نظر بر سرده حضور N غیرضروری است و واکنش‌های برخوردار در عصر انجام می‌شود اکسیمین و انتزاعی دو طریقی را انجام می‌کند که فعل و انفعال را محدود می‌سازد و اینجای است که ضرورت آن احساس می‌گردد.

درجاات آزادی اضافی مؤثر از لحاظ عنصر سوم می‌باشد. بدون جذب انرژی توسط عنصر اتمی باشد. بی‌بی‌برخورد با O، O، واکنش انجام

\[O_{3} + \text{پدیده(3)} \]

امیر، وجود ازن در بالای تروبوسپر زیان‌آور است (2).

۲- ازن طبیعی:

۲-۱ جذب اشعه مایورا بتفش:

در شرایط طبیعی، ازن به عنوان ترکیب اصلی طبقات نخیاچی جو نمی‌باشد. بلکه به مقدار جزئی در آن موجود است. جذب مقدار قابل توجهی اشعه مایورا توسط میکروز از آن است که قسمت بالایی انتمسفر حاوی مقدار زیادی ازن نمی‌باشد.

جذب تروبوسپر زیان‌بخش اشعه مایورا بتفش توسط ازن باعث حفاظت فعالیت‌های حیاتی در سطح زمین می‌شود. همگامی که بدن فردی تحت تأثیر لامب مایورا بتفش نوار وگرد پرتوهایی با طول موج کوتاه به تغییرات فیزیولوژیکی در بدن می‌گردد. در واقع اشعه با طول موج کمتری از ۲۹ میکرون پیوندهای کربن-هیدروژن مولکول‌های آمیتی را می‌شکند. همچنین وقتی مولکول‌های آمیتی تحت تأثیر پرتوهای با طول موج بیش از ۲۹ میکرون نارنجی‌تر می‌شوند است. نشانه‌های پرتوهای مایورا بتفش می‌تناند مولکول‌های آب را تجزیه نمایند. بنابراین لایه ازن در طبقات بالای جو زمین‌کردن به عنوان یک پرتو و لایه محافظت کننده عمل نمایند (2).
در ارتقاء خیلی بالایی ۸۰ کیلومتری مقدار از کمک می‌یابد و این نه تنها به دلیل کاهش دانسته‌جو و تأثیر آن بر معادله "۲" بلکه به دلیل انزیم واکنش زیر می‌باشد:

\[O + O + M \rightarrow O + O + M \]

که در آن \(M \) به عنوان یک عنصر مبتلا محسوب می‌گردد و در برخورد و تصادم سه عنصر می‌باشد. در این ارتقاء تجربیات نوری مولکول‌های اکسیژن توسط پرتوهای فیلتر نشده ناشأ گرفته \(U \) از اهمیت ویرایه برخورد است و این به دلیل غلظت بالایی اکسیژن اتمی که ناشر از اکسیژن رزن مولکولی است، می‌باشد.

غلظت بالایی اکسیژن اتمی باعث می‌گردد که فعل و انتفاعات معادله "۵" بیشتر از معادله "۲" انجام بی‌پایان شود. در انتفاعات بالایی ۱۵ کیلومتر از واکنش بین سه عنصر کاسته شده و بدرین ترکیب غلظت از اکسیژن کاهش پیدا می‌کند.

در ارتقاء کمتر از ۵۰ کیلومتری میزان ترکیب ۰ می‌شود و این بدین جذب پرتوهای میکروانفشاری در انتفاعات بالای است که سبب کاهش تجزیه اکسیژن مولکولی مکابی معادله "۱" می‌گردد. یک دین ترکیب نیاز به رشد که جداکر غلظت از یک داده ترکیب "۵" کیلومتری بیشتر اما همانطوری که در شکل اسهال "۸" نشان داده شده است، چه اکثر غلظت در انتفاعات پایین تر است. و این به دلیل انجام واکنش های شیمیایی در طبقات بالا و تأثیر انتقال حرارتی رادیاکتیو می‌باشد.

میزان واکنش‌های شیمیایی بین دو ترکیب، که بستگی به برخورد در عنصر دارد، معادل میزان مولکول‌های کولی‌ای در گزارش می‌باشد و مناسب با تقریب واکنش مولکولی در خلال تصادم، افزايش می‌یابد. هم‌مانندی الکترون در برخورد مناسب با غلظت تولید دو ترکیب و میزان واکنش است، در معادله "۳" سرعت واکنش با غلظت سه جزء موجود در سمت چپ معادله مناسب است. با کاهش دانسته جو سرعت این واکنش نیز سرعت کاهش پیدا می‌کند بنابراین در انتفاعات بالا این فرآیند به کننده انجام می‌باید.

پرتوهای شکنندگی برای انجام واکنش "۳" در دارای طول موجی کمتر از ۱/۱ میکرون باقی می‌مانند. بنابراین با وجود نور مرئی خورشید از ناباید است و به اکسیژن مولکولی و اکسیژن اتمی تبدیل می‌گردد. میزان جذب پرتوهای با طول موج کمتر از ۱/۱ میکرون بسیار بالاست. میزان جذب اشعه ماروا و نشین تأمین تجربی نوری ۰ مطابق با معادله "۱" به همراه تخمین زده تحریک الکترون‌ها در اکسیژن مولکولی بدلیل جذب تمامی پرتوهای خورشیدی با طول موج کمتر از ۱/۱ میکرون برای ما همیشه دارند.
در تطبیق مشاهده شده است. در سطح زمین غلظت از 22ppm در ارتفاع 26 کیلومتر در خط استوا و در ارتفاع 18 کیلومتر غلظت از 53ppm در ارتفاع 0/5 است.

شکل الف: توزیع عمودی از

دلیل این اختلاف یکسری فرآیندهای انقیانی است که باعث جابجایی از 2 محل تولید به طرف ارتفاعات بالای می‌گردد. حرکت انتقال توده‌ای از هوا در زیر تغییر درجه حرارت نیز سبب پخش از ارتفاعات بالای می‌گردد. اکتش 3 به سمت بروده و از ارتفاعات بالایی در ارتفاعات بالایی از محل هایی که در آنها اشعه خورشید دیواری و مسیان تولید از بالا است به سمت نقطه می‌گردد (3).

در ارتفاعات بالایی که لایه با غلظت بالایی از ارتفاعات بالایی در نفوذ اشته می‌آیند می‌تواند از تولید بالایی است. در نتیجه باعث گچ‌بری و خدمات بهداشتی درمانی استان زنجان
نص فنون (N) توسط جت‌های سبب کاهش لایه ازن می‌گردد.تا اواست دهه 1375 ثابت شد که کلورورها و برومورها نولیده نشده، توسط انسان شامل ترکیبات هستند که می‌توانند اثراتی روی لایه ازن داشته باشند. گازهایی که در کنترل لایه ازن در استراتوسم اهمیت دارند (غازهای بینی‌کوهی و کربن، هالون، متان، اکسیدهای ازون و دی‌کسید کربن) در فعالیت انسان مرتبًا افزایش می‌یابند. افزایش این گازها و نوسانات دما و باد در نتیجه مختلف سبب تغییرات در لایه ازن می‌شود.

ازن در استراتوسم در ارتفاعات بین 50-150 کیلومتری موجود است. حداکثر غلظت ازن در حدود 200 پپم (ppm) در واحد حجم است. منابع ازون ETH و BAH به ترتیب زیر می‌باشند:

\[
\begin{align*}
\text{CL} + \text{O}_3 & \rightarrow \text{CLO} + \text{O}_2 \\
\text{CLO} + \text{O} & \rightarrow \text{Cl} + \text{O}_2 \\
\text{NO}_2 + \text{O}_3 & \rightarrow \text{NO}_2 + \text{O}_2
\end{align*}
\]

این کلر در واکنش‌های "2" "3" مصرف نمی‌شود بلکه به عنوان کاتالیزور برای انجام واکنش نهایی استفاده می‌شود. مهم ترین موادی که در کاهش ازن مسئولیت NO و NO\textsubscript{2} می‌باشند.

تلولید و تخریب ازن به طور مداوم صورت می‌پذیرد. میزان ازن از تغییرات بین این کاهش و افزایش در سطح جهانی تعیین می‌شود. وقتی گیاهان و یا سطح زمین برخورده محدود می‌گردد، واکنش‌های فتوشیمیایی در ارتفاعات بالای ارتفاع 20 تا 30 کیلومتری صورت می‌گیرد و این به خاطر محصولات اولیه است که در ارتفاعات بالا تولید می‌شوند. لازم به توضیح است که با این تغییرات در نظر داشته که مدت زمان به حالت اول برگشتن "half restoration period" نصف ازن "یا به عبارت دیگر مدت زمان لازم برای انجام واکنش‌ها و رسیدن به میزان موجود نسبت به ارتفاع دارد. در ارتفاعات 50 کیلومتری در تمام فصول حداکثر یک ساعت و در ارتفاعات 35 کیلومتری ۵۰ ساعت است که ممكن است تا ۳۰ روز در ناسیونال و ۱۰۰ روز در رزوم و ۱۰ روز در زمستان بدرافت باشد.

در این فصل میزان جذب اشعه ماوراء برش توسط ارتفاعات بالایی به همین دلیل بهره‌برداری زاویه‌بسته افزایش می‌پیدا. در ارتفاعات 30-35 کیلومتری به مدت یک سال می‌رسد. بنابراین در ارتفاعات بالایی غلظت ازن گسترش به اندازه‌ای عالی شده و در حفاظت میزان ازن در ارتفاعات بالایی حذف ۲۰ پپم است که تغییرات در خواص هوایی به نتیجه‌های تغییری سبب می‌شود که اثرات فتوشیمیایی با وجود دارد منظور آن است (۳).

2- ۲: کاهش لایه ازن:

تأثیر فعالیت‌های بشری بر روی لایه ازن باید از ۱۵ سال است که در حال بررسی است. تولید
سایر نتیجه‌گیری‌های اندیش‌هایی در برابر بروز آن ۲-۳ گرما ویژگی‌های بیشتری را به صورت‌های مختلف
افراشی بیدار می‌کند بدلایل ذکر شده تخرب از
بیشتر شده و میزان آن کاهش می‌یابد.

علی‌رغم کاهش دهنده از بر روی سایر مولکول‌ها
نیز تأثیر دارد. بنابراین می‌توانند بطور موقت با
دامن از واکنش‌های کاتالیتیک کاهش از حذف

CH_{4} در واکنش با

TOCL تولید

تولید می‌کند و در این صورت نمی‌توانند در

کاهش از مؤثر باشند.

در اینجا ذکر دو نکته لازم است:

- میزان از در اواخر زمستان و اولین بهار در

نیمکره، نمایش گریه به تخت نزدیک می‌شود

و در نیمکره جنوبی هرچه از تخت نزدیک

می‌شود حداکثر می‌یابد.

- میزان از در مناطق با مکان جغرافیایی باهنر

با کاهش تابش خورشید ارتباط مستقیم دارد

یعنی در حدود تنها ۹ درصد تابش خورشید این میزان

حداکثر است.

۲-۳ گرما ویژگی‌های اندیش‌هایی در برابر بروز آن

تغییرات از زمان‌های مختلف متفاوت است.

به‌طوری‌که تغییرات ناشی از شدت تابش خورشید

و حرکت باد است که در ساعت‌های مختلف روی،

فصل‌ها و سال‌های مختلف متفاوت می‌باشد.

این تغییرات به سیکل خورشیدی نیز بستگی

دارد. میزان تشکیل‌های کاتالیتیک و بروز

کاهش‌هایی به تغییرات های خورشیدی

منجر است و این مسئله روی این تأثیر می‌گذارد.
یخی (icy clouds) فاقدن از را بشکنند. این عمل با تغییر کلر آزادشده از کلر و نیتروژن ها که در اثر فعالیت‌های انسانی وارد اتمسفر اینجام می‌شود، انجام می‌گیرد. خانم سرماهای استاتیکی را در بررسی‌های خود به حساب نیامده است.

این دانشمند ارتباط‌گرایش نداشت، به جهت پاگ‌سازی انتخاب شده با استفاده از یک ابزار مورد استفاده قرار گرفته و در جریان حرارت سوراخ‌های این را تصمیم گرفت که است. وقتی پیش‌بینی‌های استنتاپی از شرایط منجر به سرماها، سرماها از شرایط منجر به سرماها، سرماها و کم‌عمدی هر شرایطی که باعث هم‌بودن استنتاپی از شرایط گردد. هر گونه که باعث هم‌بودن استنتاپی از شرایط گردد، سرماها و غرب می‌وزند این سوراخ سرماهات و عمیق‌تر از معمول می‌شود.

تغییر چهت وزش‌بادهای استنتاپی تقیبی هر یک اتفاق معین که بنام "نوشتهات بی‌سال" (Quasi-Biennial Oscillation) QBO یا آژورشات solomone خوانده می‌شود. خانم سرماها و کم‌عمدی هر شرایطی که باعث هم‌بودن استنتاپی از شرایط گردد، سرماها و غرب می‌وزند این سوراخ سرماهات و عمیق‌تر از معمول می‌شود.

می‌توانست سرماهای کم‌تر و در نتیجه سوراخ‌های عمیق‌تر را در سال 1989 پیش بینی کند. هم‌مانندی این پیش‌بینی بعث مونتیستند دلایلی وجود دارد که نشان می‌دهد باعث شدن استنتاپی که از شرایط منجر می‌شود نتایج تیم‌شناسی با آزمایش‌های افزایشی استنتاپی، که با جابجایی کردن اتمسفر سمپل‌های دارده ولی هم پر و فعال است. احتمالاً هر گونه سرماها، یا پاشیدن حمرات می‌تواند به توسط باد‌های گردد به قطع منفلتی، می‌شود و سوراخ‌های از گردش

عین حال کاهش دما و سرماهای استنتاپی، که از کلر و فلوئورکلر ها وارد آزمایش شد. این گزارش‌ها به سرعت‌های متفاوت در استنتاپی در حال افزایش هستند. به عنوان مثال، نماد Hallons، حدود 1/100 و هالورن (Hallons) سالانه بین 15 - 100/1000 فاصله بین می‌کند (2).

- ۲-۳-سوراخ‌های از یک

چنین دستی آورش در ماه‌های اکثر خانم Joseph Farman و آقای Susan Solomon شیمی‌دان، که به روی تغییرات جوی مطالعاتی می‌کردند. هر چهار از بزرگ‌ترین کنگره‌ها در استانگ‌های Holley bay جنوب که از سال 1976 یک‌میلیارد از اندازه‌گیری می‌کرد، کاهش در کل از را مشاهده کردند. این کاهش حدود 5% بود که در اواست دهه 70 نا همسر سال در همان ماه بروده می‌آمد. یک میلیارد کاهش در این دهه که توسط مقياس TOMS شناسایی شد. نیز برقراری از مقياس اندازه‌گیری بی‌بی‌سال شده است.

از بین رفت از آن تهیه به‌ثم‌بای می‌تینن استنتاپی در ارتقای 15-24 کیلومتر محدود می‌شود. در این مدل است که وجود ابر در گرماش از اندازه‌گیری کتالوژ (icy clouds) بینمی‌باشد و باعث استنتاپی داخل سوراخ‌های می‌شود. این دنیای پایین شرایط مناسب را برای کاهش از بزرگ‌ترین می‌آورد توده‌های ابر
زمستان، سبب بخش هوای قطب میشود که این بخش منجر به ایجاد دماهای بسیار بالا در شب قطب می‌شود.

2- این دمای پایین سبب تشکیل ابرهای استرانوسفیک شد.

3- تشکیل ابرهای حذف نیتروز در پی استراتورسفری شد.

4- کلاه‌پوشی کامل به کاملاً از میشود و واکنش‌های انرژی‌ها بر روی سطح ذرات از سبب رهاشدن کلر می‌شود.

4- در بهار و زمستان، قطب‌نشینی از میان می‌گردد.

5- این انتخابات است که تحت بروز مستند، این احتمال وجود دارد که بیان آن در کاملاً از میان می‌گردد.

2- پیک ارتباط غیرمستقیم میزان Chlor و O3 می‌شود است، برای اکنون 1-0 Chlor باشد و 2-0 میزان است به دست آوردن اطلاعات ارزشمندی.

1- بیشترین تغییرات از ناحیه 20-12 کیلومتری واقع شده است.

3- ابرهای استرانوسفیک قطبی در فصل بهار در قطب جنوب بروز خارج می‌شوند.

4- واکنش‌های بسیاری برای تشکیل سرویاژ از میان در نواحی اطراف قطب جنوب داده شده است، که شامل اثرات خورشیدی، اثرات دست‌اندازی و واکنش‌های شیمیایی ناهارگاهی (واکنش‌های بين فازهای گاز با گازهای متغیر یا جامد) است. مهم‌ترین اثرهای داده شده برای بیان دقیقه تغییرات از میان در قطب بشر زیر است:

1- شرایط ویژه‌های نیمکره جنوبی قطب
کارخانه‌های تولید این مواد شیمیایی کردن
 تصمیم گرفته تا سال 20002000 تولیدات خودشان
 را تا 10% کاهش دهد.
 در سومین برنامه حدود 2% کاهش از سال
 1995 دارای شد. در سال
 2000-1996 نوشته شده است و در اولین
 جلسه مشخص شد که کاهش از در سطح
 جهانی در سال 2000 حدود 8% (در مقایسه با
 موجودات زنده زبان آور باشد (2).

REFERENCES: