مکانیسم تأثیر فاکتورهای رشد بر تکامل چشم جنین

فرزند دهه‌هائی - مرجعیت و افتخاری دانشگاه علوم پزشکی تبریز

خلاصه:

فاکتورهای رشد، نقش کلیدی دارند در تکامل چشم جنین. این افراد ارتباط منطقه‌ای بین سطح و پوست چشم جنین را همراه با نگرانی‌های مختلفی دارند. این افراد به دنبال تثبیت فاکتورهای رشد و تکامل چشم جنین می‌باشند.

برای تعیین شکل و ناحیه خاصیت بصری جنین، است که سایر عضوی‌ها، یک سازمان به‌دست توسط فعالیتی داشته باشند. این امر باعث می‌شود که سایر عضوی‌ها، یک سازمان به‌دست توسط فعالیتی داشته باشند.

در اینجا نقش فاکتورهای رشد متفاوت را در تکامل چشم جنین به‌کار می‌بریم.

واژه‌های کلیدی:

ایران، فرزند، دانشگاه علوم پزشکی تبریز، فاکتورهای رشد، تکامل چشم جنین.

فاکتورهای رشد فیبرولاستی (FGF) است. این نکات از سری بی‌پیش‌بینی ثابت شده که

می‌تواند به‌صورت مفصل شده و بیند تریب باعث رشد و تکامل سیستم‌های از سلول‌ها با مشارکت و مزودریم‌ها شود.

(FGF)²

(1)

(1)

کندنگ شبکه (RSGF) به دلیل می‌شود که باعث

تماژ شناختی است بطور می‌رسد این فاکتوره با

سایر عضوی‌ها کار می‌کنند.

بطور کلی در نوع FGF وجود دارد.

FGF (اسبی) ۲- نوع aFGF (اسبی) ۲- نوع به دلیل

که هر دو نوع می‌توانند در رشد و تکامل نوزاد باشد.

در لوله آزمایشی، رشد اکسپرسیا را از

سلول‌های کانگولیونی نیک که می‌تواند مثلاً تحریک

می‌کند و bFGF سطح غلاف الی است که دوبانگز

1. Hemeobox gene
2. Fibroblast growth factor
3. Retinal Stimulating Growth Factor
را بپن سیزکی که این فاکتورهای رشد در فراهم کننده مدرن شویه، از طرفی دو فاکتور فوق با هم به عنوان FGF (Fibroblast Growth Factor) بیان می‌شود. این کاربرد در طرح‌های کشیدگی مناسب می‌باشد و باعث افزایش تولید سلول‌های پوستی شده و کنترل کند و باعث پیش‌بردی و ساختاری در تولید فیبرهای عصبی شود.

فارکانه‌های فاکتورهای رشد در FGF می‌توانند تکثیر و تولید سلول‌های شیمیایی و FGF در چشم را تحریک کند و رشد نشان دهنده این است که سلول‌های بکری‌های دارای گیاه‌های برداری این فاکتور برای سطح غشاء جلد هستند و یک میانگین مهم برای الحاق زائده است.

فاکتورهای رشد شیمیایی (IGF) این فاکتورها که نام‌های سوپرماهونین نیز شناخته شده‌اند که گروهی از پلی پپتیدها هستند که ساختار و عملی مشابه انسولین دارند. اعضای این خانواده شامل FGF-I، IGF-I و IGF-II و که محصول سوماتودرین C هستند. فعالیت تکثیر ساختار محیطی شیمیایی (MSA) در حیات بقای کشیدگی است.

فاکتورهای رشد بر روی پوستی (2) این فاکتور شامل یک زنده‌برد بی‌پنتر است که در بررسی اسیدها مقاوم و دارای موانع گروپترگر است ولی بر اساس هدف دارویی وظایف متعددی می‌باشد. این فاکتور به سادگی می‌تواند باعث کنترل کند و باعث تولید سلول‌های پوستی شده و کنترل کند و باعث پیش‌بردی و ساختاری در تولید فیبرهای عصبی شود.

1. Red cell
2. Insulin like growth factor
3. Multiplicative - stimulating factor
4. Epidermal growth factor
در طی تکامل و رشد عصب بیشترین تبدیل به ارلکوئین روتینه‌های نوع II می‌شود. هم‌اکنون PDGF-AA شکل در سیستم عصبی مرکزی PDGF است.

تغییرات فیبرولیزاسیون صلیبی نا حذفی سنتگی به PDGF تأثیر دارد. در علاوه به این تاکتوبر بر روی تکنیک سلولهای مرجعی مثل سلولهای عضلانی صاف و رگه‌ای تحریک دارد. در ضمن می‌تواند بر روي سنتی و ترشح مانور خارج سلولی تأثیر داشته که بازماند یا باعث فاکتور کلویدی در تغییر رشد سلولهای عضله صاف می‌شود. همچنین مزکونی و عضلات سبک کننده و رشد کننده عدمه است.

فاکتورهای رشد انتهایی (TGF)

در نوع از این فاکتور وجود دارد نوع آلفا و نوع بتا بوسه سلولهای مختلط سنتی می‌شود و یا تغییر فیبرولیزی در تعداد زیادی از سلولهای اکتودرمی تحریک می‌کند. این فاکتور و گروه‌های مشترک بروی یک با تعداد بیشتر از اتراج سلولهای شیکه محدود و می‌توانند باعث تکنیک و حیاتی نهایی از جنگ شوند. حداقل در 6 TGF-B یا از روش مختلط وجود دارد و احتمالاً از پلاکت‌های خون در راه‌پیمایی، از تشکیل سد خونی - زلالی‌ها، می‌شود. بازیابی این فاکتور شامل عنبیه حسی

1. Placat deriative growth factor
2. Transforming growth factor
3. Retinal pigmented epithelium
بطوریکه در هنگام جراحت قرنیه می‌تراند باعث تحریک تقسیم میتوئی در سلول‌ها آن شود.

فاکتور مرجع نسبی توموری (۳) در قرنیه‌های مختلفی وجود دارد و در طی تکامل آن لایه‌ای منبک خارجی (۱) و لایه‌ای داخلی می‌شود. در حین تغییرات شکاف‌های سلول‌ها ماکروفازی در این نواحی می‌شود، این سلول‌ها فاکتور TGF-β را تولید می‌کنند که بخشی از آن به فاکتور در دوبازه شکاف‌های داخلی شبکه در حال رشد نقش فعال داشته باشد.

NGF (۴) شامل سلول‌های مختلف است - از پاساری و نگذشته‌ای تا فاکتور در قرنیه، عصب، مغزی و شبکه‌های منبکی و شبکه‌های از جهت داراد، از طرفی سلول‌های عصبی سیما، تکنیکی کوپلرینک، و آدرنرژیک که چنین را عصب‌های می‌کند احتمالاً هستند.

NGF در این گروه‌های عصبی سلول‌های است و تا زمانی که این گروه‌ها کاملاً شووند قادر به تحول درآن است. در جای‌گیری ترمیمی هم عصب‌های جسمی و هم عصب‌های سیسیکی و پاراپرمیکی عصبی را از آن باعث می‌شود. وجود انگل‌های سیمیتیکی (نور ای) می‌تواند منسوباتی است، سنگز و ترشح فیبرونکین - کلوز و گلیگور آسیابه‌گیری در سلول‌ها را تقویت می‌کند، همچنین، باعث تغییر در ساختاریت سلول‌های منبک، عصبی یا جمجمه‌ای دارد.

FGF و TGF-B اثرات متقابل بر روی دو جنبه تشکیل عروق خونی چیدن دارند. به همراه دانیابکاری می‌کند که هماهنگی می‌شود. این الگو اینکه سبب تشکیل عروق در طی تکامل جسم می‌شود. در دوزه‌های مشخص یک عامل ضد عروق غیر مناسب و تغییرات جسمانی TGF-B تاریخی خونی مشابه شبکه جسمانی می‌شود.

NGF و BFGF عمل می‌کند. اگر بوسیله این ترکیب رهگیری شبکه‌های جسمانی تولید شود احتمالاً از همین عروق خونی مشابه شبکه جلوگیری می‌کند.

NGF در مراحل مختلف، احتمالاً از می‌شود و بلوغ سلول‌های راکه در معرض این مراحل شرط می‌شود (برای درست ساخته‌پذیری با منشاء منابع عصبی) تحریک می‌کند.

فاکتور رشد موزومی (۵) گرچه حضور MGF در هنگام جراحت قرنیه نشده است ولی بنظر می‌رسد که فاکتور می‌تواند در مهاجرت، تکثیر و احتمالاً تحمیل سلول‌های منشأ از سیست عصبی نقش داشته باشد. هم برای اندوتیپین و هم برای کروتوسیما می‌تواند است

1. Plasminogen activator
2. Macdermal growth factor
3. Tumor necrosis factor
4. Outer plexiform layer
5. outer nuclear layer
6. Nerve growth factor
پیگیری نتایج نشان دهنده تأثیر کمیتی و کیفیتی حیوان در نتایج آزمون تشخیص و تشخیص بهبود انسانی در زمینه درمانی است. نتایج‌های این آزمون نشان می‌دهد که دانشگاه علوم پزشکی و خدمات بهداشتی درمانی استان زنجان، شماره ۱۹- تابستان ۱۳۸۶.

1. Neurotrophic Factor
2. Platelet activity factor
3. Ciliary neurotrophic factor
نتیجه: فاکتورهای رشد برای تشکیل و تغییر جنسیت و ضروری است که کدام این فاکتورهای بر روی سلول‌های خاص تأثیر گذاشته و منجر به تشکیل متابولیزام و مواد اولیه

منابع و ماتخی:  
7. Carbonetto S. and P. cochard 1987 IN Vitro studies on the control of nerve fiber growth by the extracellular matrix of the nervous system J. physiol (Lond) 82:258-270. 