Volume 27, Issue 124 (September & October 2019)                   J Adv Med Biomed Res 2019, 27(124): 8-15 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Namdar F, Bahrami F, Bahari Z, Ghanbari B, Elahi S A, Mohammadi M T. Evaluation of the Effects of Fullerene C60 Nanoparticles on Oxidative Stress Parameters at Liver and Brain of Normal Rats. J Adv Med Biomed Res 2019; 27 (124) :8-15
URL: http://zums.ac.ir/journal/article-1-5745-en.html
1- Dept. of Physiology and Medical Physics, School of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
2- Dept. of Chemistry, Sharif University of Technology, Tehran, Iran
3- Dept. of General Surgery, School of Medicine, Alborz University of Medical Sciences, Tehran, Iran
4- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran , Mohammadi.mohammadt@yahoo.com
Abstract:   (146215 Views)

Background & Objective: The potent antioxidant property of fullerene C60 nanoparticles and their derivatives has been demonstrated in a wide range of in vitro and in vivo studies. Hence, we examined the effects of fullerene C60 on the oxidative stress parameters at brain and liver of rats in normal situation.
Materials & Methods: The study was performed in two groups of Wistar rats (each group, n = 6); normal and fullerene-treated normal animals. Treated rats received orally fullerene via oral gavage at dose of 1 mg/kg/day for 60 days. At termination of the study, the oxidative stress parameters were determined at brain and liver tissues, including the contents of glutathione (GSH) and malondialdehyde (MDA), and the activity of catalase (CAT) and superoxide dismutase (SOD). The t-test was used to analyze the data between two groups.
Results: Fullerene C60 treatment did not change blood glucose of treated rats compared to untreated rats. Fullerene C60 significantly increased the value of CAT activity (by 66%) and MDA levels (by 68%), whereas decreased SOD activity (by 33%) at liver of treated rats compared to untreated animals (P< 0.05). Fullerene administration significantly increased only CAT activity of brain in the treated rats (0.34±0.10 U/mg protein) compared to untreated animals (0.12±0.03 U/mg protein), (P<0.05).
Conclusion: Our findings indicated that oral administration of fullerene C60 nanoparticles differently changes the oxidative stress parameters in liver and brain at normal condition. It is suggested that these effects must be considered for application of these nanoparticles in various therapeutic purposes.

Full-Text [PDF 477 kb]   (155686 Downloads) |   |   Full-Text (HTML)  (3455 Views)  

Our findings indicated that oral administration of fullerene C60 nanoparticles differently changes the oxidative stress parameters in liver and brain at normal condition. It is suggested that these effects must be considered for application of these nanoparticles in various therapeutic purposes.

Type of Study: Original Article | Subject: Life science
Received: 2019/08/10 | Accepted: 2019/11/14 | Published: 2020/02/8

1. Islam MT. Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders. Neurol Res. 2017;39(1):73-82. [DOI:10.1080/01616412.2016.1251711]
2. Stefanatos R, Sanz A. The role of mitochondrial ROS in the aging brain. FEBS lett. 2018;592(5):743-58. [DOI:10.1002/1873-3468.12902]
3. Puttachary S, Sharma S, Stark S, Thippeswamy T. Seizure-induced oxidative stress in temporal lobe epilepsy. Biomed Res Int. 2015;2015:745613. [DOI:10.1155/2015/745613]
4. Folbergrova J, Jesina P, Nuskova H, Houstek J. Antioxidant enzymes in cerebral cortex of immature rats following experimentally-induced seizures: upregulation of mitochondrial MnSOD (SOD2). Int J Dev Neurosci. 2013;31(2):123-30. [DOI:10.1016/j.ijdevneu.2012.11.011]
5. Akhtar MJ, Ahamed M, Alhadlaq HA, Alshamsan A. Mechanism of ROS scavenging and antioxidant signalling by redox metallic and fullerene nanomaterials: Potential implications in ROS associated degenerative disorders. Biochim Biophys Acta Gen Subj. 2017;1861(4):802-13. [DOI:10.1016/j.bbagen.2017.01.018]
6. Cardenas-Rodriguez N, Gonzalez-Trujano ME, Aguirre-Hernandez E, et al. Anticonvulsant and antioxidant effects of Tilia americana var. mexicana and flavonoids constituents in the pentylenetetrazole-induced seizures. Oxid Med Cell Longev. 2014;2014:329172. [DOI:10.1155/2014/329172]
7. Folbergrova J. Oxidative stress in immature brain following experimentally-induced seizures. Physiol Res. 2013;62:S39-S48.
8. Galvan YP, Alperovich I, Zolotukhin P, et al. Fullerenes as anti-aging antioxidants. Curr Aging Sci. 2017;10(1):56-67. [DOI:10.2174/1874609809666160921120008]
9. Prylutska S, Grynyuk I, Matyshevska O, Prylutskyy YI, Ritter U, Scharff P. Anti‐oxidant properties of C60 fullerenes in vitro. Fullerenes, Nanotubes Carbon Nanostruct. 2008;16(5-6):698-705. [DOI:10.1080/15363830802317148]
10. Liu Q, Cui Q, Li XJ, Jin L. The applications of buckminsterfullerene C60 and derivatives in orthopaedic research. Connect Tissue Res. 2014;55(2):71-9. [DOI:10.3109/03008207.2013.877894]
11. Krusic PJ, Wasserman E, Keizer PN, Morton JR, Preston KF. Radical reactions of c60. Science. 1991;254(5035):1183-5. [DOI:10.1126/science.254.5035.1183]
12. Baati T, Bourasset F, Gharbi N, et al. The prolongation of the lifespan of rats by repeated oral administration of [60]fullerene. Biomaterials. 2012;33(19):4936-46. [DOI:10.1016/j.biomaterials.2012.03.036]
13. Andrievsky GV, Bruskov VI, Tykhomyrov AA, Gudkov SV. Peculiarities of the antioxidant and radioprotective effects of hydrated C60 fullerene nanostuctures in vitro and in vivo. Free Radic Biol Med. 2009;47(6):786-93. [DOI:10.1016/j.freeradbiomed.2009.06.016]
14. Mousavi SZ, Nafisi S, Maibach HI. Fullerene nanoparticle in dermatological and cosmetic applications. Nanomedicine. 2017;13(3):1071-87. [DOI:10.1016/j.nano.2016.10.002]
15. Tokuyama H, Yamago S, Nakamura E, Shiraki T, Sugiura Y. Photoinduced biochemical activity of fullerene carboxylic acid. J Am Chem Soc. 1993;115(17):7918-9. [DOI:10.1021/ja00070a064]
16. Basso AS, Frenkel D, Quintana FJ, et al. Reversal of axonal loss and disability in a mouse model of progressive multiple sclerosis. J Clin Invest. 2008;118(4):1532-43. [DOI:10.1172/JCI33464]
17. Darabi S, Mohammadi MT. Fullerenol nanoparticles decrease ischaemia-induced brain injury and oedema through inhibition of oxidative damage and aquaporin-1 expression in ischaemic stroke. Brain Inj. 2017;31(8):1142-50. [DOI:10.1080/02699052.2017.1300835]
18. Sarami Foroshani M, Sobhani ZS, Mohammadi MT, Aryafar M. Fullerenol nanoparticles decrease blood-brain barrier interruption and brain edema during cerebral ischemia-reperfusion injury probably by reduction of interleukin-6 and matrix metalloproteinase-9 transcription. J Stroke Cerebrovasc Dis. 2018;27(11):3053-65. [DOI:10.1016/j.jstrokecerebrovasdis.2018.06.042]
19. Fluri F, Grunstein D, Cam E, et al. Fullerenols and glucosamine fullerenes reduce infarct volume and cerebral inflammation after ischemic stroke in normotensive and hypertensive rats. Exp Neurol. 2015;265:142-51. [DOI:10.1016/j.expneurol.2015.01.005]
20. Vani JR, Mohammadi MT, Foroshani MS, Jafari M. Polyhydroxylated fullerene nanoparticles attenuate brain infarction and oxidative stress in rat model of ischemic stroke. EXCLI J. 2016;15:378-90.
21. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248-54. [DOI:10.1016/0003-2697(76)90527-3]
22. Aebi H. Catalase in vitro. Methods Enzymol. 1984;105:121-6. [DOI:10.1016/S0076-6879(84)05016-3]
23. Rasouli Vani J, Taghi Mohammadi M, Sarami Foroshani M, Rezazade E. Evaluation of the neuroprotective and antioxidant effects of Dorema aucheri extract on cerebral ischaemia-reperfusion injury in rats. Pharm Biol. 2019;57(1):255-262. [DOI:10.1080/13880209.2019.1597132]
24. Winterbourn CC, Hawkins RE, Brian M, Carrell RW. The estimation of red cell superoxide dismutase activity. J Lab Clin Med. 1975;85(2):337-41.
25. Tietz F. Enzymic method for quantitatve determination of nanogram amount of total and oxidized glutathione: applications to mammalian blood and other tissues. Biocham. 1969;27:502-22. [DOI:10.1016/0003-2697(69)90064-5]
26. Sheweita SA, El-Hosseiny LS, Nashashibi MA. Protective effects of essential oils as natural antioxidants against hepatotoxicity induced by cyclophosphamide in mice. PloS one. 2016;11(11):e0165667. [DOI:10.1371/journal.pone.0165667]
27. Kaushal S, Ahsan AU. Epigallocatechin gallate attenuates arsenic induced genotoxicity via regulation of oxidative stress in balb/C mice. Mol Biol Rep. 2019;46(5):5355-69. [DOI:10.1007/s11033-019-04991-5]
28. Yousef MI, Mutar TF, Kamel MAE. Hepato-renal toxicity of oral sub-chronic exposure to aluminum oxide and/or zinc oxide nanoparticles in rats. Toxicol Rep. 2019;6:336-46. [DOI:10.1016/j.toxrep.2019.04.003]
29. Osuna S, Swart M, Sola M. On the mechanism of action of fullerene derivatives in superoxide dismutation. Chemistry. 2010;16(10):3207-14. [DOI:10.1002/chem.200902728]
30. Beytut E, Aksakal M. Effects of dietary vitamin E and selenium on antioxidative defense mechanisms in the liver of rats treated with high doses of glucocorticoid. Biol Trace Element Res. 2003;91(3):231-41. [DOI:10.1385/BTER:91:3:231]
31. Heit C, Marshall S, Singh S, et al. Catalase deletion promotes prediabetic phenotype in mice. Free Radic Biol Med. 2017;103:48-56. [DOI:10.1016/j.freeradbiomed.2016.12.011]
32. Groeger G, Quiney C, Cotter TG. Hydrogen peroxide as a cell-survival signaling molecule. Antioxid Redox Signal. 2009;11(11):2655-71. [DOI:10.1089/ars.2009.2728]
33. Salim S. Oxidative stress and the central nervous system. J Pharmacol Exp Ther. 2017;360(1):201-5. [DOI:10.1124/jpet.116.237503]
34. Nedzvetskii V, Pryshchepa I, Tykhomyrov A, Baydas G. Inhibition of reactive gliosis in the retina of rats with streptozotocin-induced diabetes under the action of hydrated C 60 fullerene. Neurophysiol. 2016;48(2):130-40. [DOI:10.1007/s11062-016-9579-5]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2023 CC BY-NC 4.0 | Journal of Advances in Medical and Biomedical Research

Designed & Developed by : Yektaweb  Co-Publisher: Farname Inc.