1. Islam MT. Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders. Neurol Res. 2017;39(1):73-82. [
DOI:10.1080/01616412.2016.1251711]
2. Stefanatos R, Sanz A. The role of mitochondrial ROS in the aging brain. FEBS lett. 2018;592(5):743-58. [
DOI:10.1002/1873-3468.12902]
3. Puttachary S, Sharma S, Stark S, Thippeswamy T. Seizure-induced oxidative stress in temporal lobe epilepsy. Biomed Res Int. 2015;2015:745613. [
DOI:10.1155/2015/745613]
4. Folbergrova J, Jesina P, Nuskova H, Houstek J. Antioxidant enzymes in cerebral cortex of immature rats following experimentally-induced seizures: upregulation of mitochondrial MnSOD (SOD2). Int J Dev Neurosci. 2013;31(2):123-30. [
DOI:10.1016/j.ijdevneu.2012.11.011]
5. Akhtar MJ, Ahamed M, Alhadlaq HA, Alshamsan A. Mechanism of ROS scavenging and antioxidant signalling by redox metallic and fullerene nanomaterials: Potential implications in ROS associated degenerative disorders. Biochim Biophys Acta Gen Subj. 2017;1861(4):802-13. [
DOI:10.1016/j.bbagen.2017.01.018]
6. Cardenas-Rodriguez N, Gonzalez-Trujano ME, Aguirre-Hernandez E, et al. Anticonvulsant and antioxidant effects of Tilia americana var. mexicana and flavonoids constituents in the pentylenetetrazole-induced seizures. Oxid Med Cell Longev. 2014;2014:329172. [
DOI:10.1155/2014/329172]
7. Folbergrova J. Oxidative stress in immature brain following experimentally-induced seizures. Physiol Res. 2013;62:S39-S48.
8. Galvan YP, Alperovich I, Zolotukhin P, et al. Fullerenes as anti-aging antioxidants. Curr Aging Sci. 2017;10(1):56-67. [
DOI:10.2174/1874609809666160921120008]
9. Prylutska S, Grynyuk I, Matyshevska O, Prylutskyy YI, Ritter U, Scharff P. Anti‐oxidant properties of C60 fullerenes in vitro. Fullerenes, Nanotubes Carbon Nanostruct. 2008;16(5-6):698-705. [
DOI:10.1080/15363830802317148]
10. Liu Q, Cui Q, Li XJ, Jin L. The applications of buckminsterfullerene C60 and derivatives in orthopaedic research. Connect Tissue Res. 2014;55(2):71-9. [
DOI:10.3109/03008207.2013.877894]
11. Krusic PJ, Wasserman E, Keizer PN, Morton JR, Preston KF. Radical reactions of c60. Science. 1991;254(5035):1183-5. [
DOI:10.1126/science.254.5035.1183]
12. Baati T, Bourasset F, Gharbi N, et al. The prolongation of the lifespan of rats by repeated oral administration of [60]fullerene. Biomaterials. 2012;33(19):4936-46. [
DOI:10.1016/j.biomaterials.2012.03.036]
13. Andrievsky GV, Bruskov VI, Tykhomyrov AA, Gudkov SV. Peculiarities of the antioxidant and radioprotective effects of hydrated C60 fullerene nanostuctures in vitro and in vivo. Free Radic Biol Med. 2009;47(6):786-93. [
DOI:10.1016/j.freeradbiomed.2009.06.016]
14. Mousavi SZ, Nafisi S, Maibach HI. Fullerene nanoparticle in dermatological and cosmetic applications. Nanomedicine. 2017;13(3):1071-87. [
DOI:10.1016/j.nano.2016.10.002]
15. Tokuyama H, Yamago S, Nakamura E, Shiraki T, Sugiura Y. Photoinduced biochemical activity of fullerene carboxylic acid. J Am Chem Soc. 1993;115(17):7918-9. [
DOI:10.1021/ja00070a064]
16. Basso AS, Frenkel D, Quintana FJ, et al. Reversal of axonal loss and disability in a mouse model of progressive multiple sclerosis. J Clin Invest. 2008;118(4):1532-43. [
DOI:10.1172/JCI33464]
17. Darabi S, Mohammadi MT. Fullerenol nanoparticles decrease ischaemia-induced brain injury and oedema through inhibition of oxidative damage and aquaporin-1 expression in ischaemic stroke. Brain Inj. 2017;31(8):1142-50. [
DOI:10.1080/02699052.2017.1300835]
18. Sarami Foroshani M, Sobhani ZS, Mohammadi MT, Aryafar M. Fullerenol nanoparticles decrease blood-brain barrier interruption and brain edema during cerebral ischemia-reperfusion injury probably by reduction of interleukin-6 and matrix metalloproteinase-9 transcription. J Stroke Cerebrovasc Dis. 2018;27(11):3053-65. [
DOI:10.1016/j.jstrokecerebrovasdis.2018.06.042]
19. Fluri F, Grunstein D, Cam E, et al. Fullerenols and glucosamine fullerenes reduce infarct volume and cerebral inflammation after ischemic stroke in normotensive and hypertensive rats. Exp Neurol. 2015;265:142-51. [
DOI:10.1016/j.expneurol.2015.01.005]
20. Vani JR, Mohammadi MT, Foroshani MS, Jafari M. Polyhydroxylated fullerene nanoparticles attenuate brain infarction and oxidative stress in rat model of ischemic stroke. EXCLI J. 2016;15:378-90.
21. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248-54. [
DOI:10.1016/0003-2697(76)90527-3]
22. Aebi H. Catalase in vitro. Methods Enzymol. 1984;105:121-6. [
DOI:10.1016/S0076-6879(84)05016-3]
23. Rasouli Vani J, Taghi Mohammadi M, Sarami Foroshani M, Rezazade E. Evaluation of the neuroprotective and antioxidant effects of Dorema aucheri extract on cerebral ischaemia-reperfusion injury in rats. Pharm Biol. 2019;57(1):255-262. [
DOI:10.1080/13880209.2019.1597132]
24. Winterbourn CC, Hawkins RE, Brian M, Carrell RW. The estimation of red cell superoxide dismutase activity. J Lab Clin Med. 1975;85(2):337-41.
25. Tietz F. Enzymic method for quantitatve determination of nanogram amount of total and oxidized glutathione: applications to mammalian blood and other tissues. Biocham. 1969;27:502-22. [
DOI:10.1016/0003-2697(69)90064-5]
26. Sheweita SA, El-Hosseiny LS, Nashashibi MA. Protective effects of essential oils as natural antioxidants against hepatotoxicity induced by cyclophosphamide in mice. PloS one. 2016;11(11):e0165667. [
DOI:10.1371/journal.pone.0165667]
27. Kaushal S, Ahsan AU. Epigallocatechin gallate attenuates arsenic induced genotoxicity via regulation of oxidative stress in balb/C mice. Mol Biol Rep. 2019;46(5):5355-69. [
DOI:10.1007/s11033-019-04991-5]
28. Yousef MI, Mutar TF, Kamel MAE. Hepato-renal toxicity of oral sub-chronic exposure to aluminum oxide and/or zinc oxide nanoparticles in rats. Toxicol Rep. 2019;6:336-46. [
DOI:10.1016/j.toxrep.2019.04.003]
29. Osuna S, Swart M, Sola M. On the mechanism of action of fullerene derivatives in superoxide dismutation. Chemistry. 2010;16(10):3207-14. [
DOI:10.1002/chem.200902728]
30. Beytut E, Aksakal M. Effects of dietary vitamin E and selenium on antioxidative defense mechanisms in the liver of rats treated with high doses of glucocorticoid. Biol Trace Element Res. 2003;91(3):231-41. [
DOI:10.1385/BTER:91:3:231]
31. Heit C, Marshall S, Singh S, et al. Catalase deletion promotes prediabetic phenotype in mice. Free Radic Biol Med. 2017;103:48-56. [
DOI:10.1016/j.freeradbiomed.2016.12.011]
32. Groeger G, Quiney C, Cotter TG. Hydrogen peroxide as a cell-survival signaling molecule. Antioxid Redox Signal. 2009;11(11):2655-71. [
DOI:10.1089/ars.2009.2728]
33. Salim S. Oxidative stress and the central nervous system. J Pharmacol Exp Ther. 2017;360(1):201-5. [
DOI:10.1124/jpet.116.237503]
34. Nedzvetskii V, Pryshchepa I, Tykhomyrov A, Baydas G. Inhibition of reactive gliosis in the retina of rats with streptozotocin-induced diabetes under the action of hydrated C 60 fullerene. Neurophysiol. 2016;48(2):130-40. [
DOI:10.1007/s11062-016-9579-5]